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SMALL UNSTEADY PERTURBATIONS IN TRANSONIC FLOWSt

* **K—Y . Fung , N. J. Yu and R. Seebass
University of Arizona
Tucson, Arizona 85721

Abstract

We investigate the effects of very small, low frequency, perturbations

to steady transonic flows . We do so in the context of two—dimensional flows

described by the small perturbation equation. We draw inferences from an

even simpler model equation. Our primary concern is with the validity of

linearizing the unsteady perturbations to such flows and , in particular ,

with the failure of earlier studies to account for the shock wave motions

that we know occur. We provide a method that allows one to account for

shock wave motions due to arbitrary, but small, unsteady changes in the

boundary conditions. Consequently, both harmonic and indicial responses

may be determined . Time—linearized results for the transonic flow past an

MACA 64A006 airfoil experiencing harmonic motions in one of several modes

are presented. Selected results are compared with those obtained from

nonlinear calculations using a shock—fitting algorithm.
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Introduction

In unsteady transonic flows , relatively small periodic changes in the

boundary conditions can lead to substantial changes in the magnitude and

phase lag of loads and moments. These are of major concern in the aerody-

namic design of aircraft that operate in the transonic regime. Reference 1

contains a short, but timely, review of various aspects of unsteady tran—

sonic flow. Of particular concern are aeroelastic behavior and flutter

boundaries. Here the unsteady perturbations may be considered small, and

linearization about a nonlinear steady flow, as suggested by Landahl2 long

ago , would seem to be appropriate. Difficulties arise , however , that detract

from this procedure. While the equation is linear , its coefficients are

variable and must be determined by numerical solution of a nonlinear problem

that , in the cases of prime interest , has a discontinuous solution; that is ,

there are embedded shock waves. Also, while a change of variables in the

linear equation provides a scaling of parameters that is indicative of the

trade—off s between, e.g., Mach number and reduced frequency , the only simili-

tude is the one basic to the nonlinear formulation.

3,4Traci et al. have developed relaxation methods for solving the result-

ing time—linearized equations of motion. Less complete, but comparable,

studies have been made by Weatherill et al.
5
; these derive from an earlier

study by Ehlers6. In both of these studies shock motions, which contribute

substantially to the time varying loads and moments , 7 ’8 are neglected . Also ,

difficulties arise in the convergence of the i terative numerical scheme .

Here we pursue a different numerical course. Yu et al.9 have developed

a numerical procedure for computing solutions to the unsteady small perturba—

tion equation for transonic flows, which treats embedded shock waves as dis—

continuities. This procedure can be used to calculate the basic steady flow
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that we wish to subject to small unsteady perturbations. A simplified version

of this algorithm can then be used to calculate the linearized unsteady per-

turbations to the flow. These calculations can be carried out in conjunction

with an algorithm that determines the shock wave motion. The procedure we

have used to calculate the shock wave motion is a rather obvious one; it is

not surprising then, that it, too, was given in the monograph by Landahl2

(Section 10.2). An alternative procedure, related in some ways to that used

here, is implied by Nixon’s’° study of perturbations to steady discontinuous

transonic flows .

After a brief review of the formulation of time—linearized methods, we

discuss a one—dimensional model equation. This provides a suitable testing

ground for our ideas and serves to illustrate several basic points we wish to

stress. Next, we discuss the two—dimensional formulation and compare results

of time—linearized calculations with those obtained without the linearization,

for an NACA 64A006 airfoil oscillating in pitch.

Formulation

We write the unsteady small disturbance equation for low frequency tran—

sonic flows in the commonly used form

— 2KM
2
$
~~ 

+ {l — M2 
— (y + l)M 2

* } $~~ + ~‘ 
— 0. (1)

The spatial coordinates, the time, and the velocity potential in (1) have been

non—dimensionalized by the chord, the rec iprocal of the angular frequency , and

the free stream velocity times the chord , respectively. Other , perhaps more

suitable, -~s are given in Reference 9. This equation results from a

_ _ _ _  _ _  - - - - -~~~~~~~~ -- -~~~~~~~~~-—-. . -
~~~~~~~~~-- - -  ~~ - ,.-~~~~~~~~~~~~~
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systematic expansion of the velocity potential in the thickness ratio T

and applies for reduced frequencies K — 0(t2~
’3), where K — wcIU , i.e.,

the angular frequency multiplied by the time it takes the flow to traverse

the airfoil chord. tin, Reisner and Tsien11 showed that, with restriction

to small perturbations throughout the flow, (1) is the only nonlinear equa-

tion that arises. For moderate frequencies the equation

— + {l — M~ — (y + 1)M~ ($ + ~ K~~ ] }~ + • ~ 0

is frequently used, with or without the term, and may provide results

that apply at higher frequencies than those obtained from (1) or the linear

form of the above equation.
3

Because K — O(r2’13), the boundary condition on the body takes the sim-

ple form

• ( x ,O , t )  — t3Y(x,t)/3x — t (Y ° + ~~(y
’
~ + KY~ ) ] ,  — 4 < ~ < 4  (2)

where Y(x ,t), the instantaneous body shape, has been decomposed into a

steady part, Y° , and an unsteady part, yU The last term, KY~ , is dropped

except when Y” is small or zero because K = 0(T
2’3). Here S is the amp-

litude of the unsteady oscillation. Par from the body we require that the

derivatives of ~ vanish. In this approximation the pressure coefficient,

defined so that it vanishes at sonic conditions , takes the form

M2 
- 1

C — — 2  2~~~~ 
(3)

p (y + l)M X

In the small disturbance approximation, the Kutta condition is imposed by re-

quiring that C~, be continuous at y — 0 for x > 1/2.

L _ . ~~~~~~~~~~~~~~~
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Any shock wave that exists in the flow field must satisfy the jump rela-

tion derived from the conservative form of the governing equation (1), namely,

- {l - M~ - (y + l)M }[~~J
2 + - 0 (4)

together with the condition derived from the assumption of irrotationality ,

1/1.). (5)

Here ~ refers to the mean value of • evaluated on each side of the dis—

continuity, and ~~~ indicates the jump in across the discontinuity;

the subscript “s” denotes the quantity evaluated at the shock surface.

Time—Linearized Equations

We now assume that the unsteady disturbances, charac terized by ~5, are

small enough that we may write

~~x,y,t) — qt°(x,y) + 5t~(x ,y, t) + o(6) (6)

and neglect higher—order terms in 6. The restriction imposed on 6 for this

to be true will depend on the other parameters of the problem, viz.,

K 5 (1 — M~)/((’r + l)M~ r] 2”3 and K. This gives

(I. - M2 - (y + 1)M 2
~ °}~ ° + ~~

° - 0

(7)

q °(x ,O) — rY° ’ (x), — 4 < x < 4
and 

~—--—- 
- 

-
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+ ((1 — M~ — (y + l)M
~+ ]II

~~
}
~ 

+ 0

(8)

— 4 < x <4
The solution to (7) must satisfy the steady version of the shock relations

(4) and (5). The shock relations for (8) are discussed later.

As mentioned above, a shock—fitting scheme that approximates the shock

waves as discontinuities normal to the free stream has been developed9 with

an alternating—direction implicit scheme (i.e., ADI) to compute the solution

to (7). Comparison of these results with the results obtained12 
using an

exact shock—fitting algorithm and line relaxation indicate that they should

suffice for most studies. At the very least they should prove adequate for

the time—linearized studies of interest here, as only small shock excursions

can be allowed.

We assume, then, that we have the numerical values for •
° required in

(8). These data will be discontinuous across some vertical line, the shock

wave, x x*, 0 < jy) < y*. We then ask, under what conditions is (8)

valid? And how do we account for shock wave motions in the linearized analy-

sis? The answers to these questions are inferred from a simple one—dimensional

model discussed in the next section.

Anticipating that we will wish to solve (8) with the same technique that

proved successful for (1) we avoid writing

P(x,y,t)  — Re{~~(x ,y)e~~t}. (9)

The assumption (9) restricts the study to harmonic linear motions. Because

indicial motions can be superimposed to obtain the results for any frequency ,
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they too seem important. The assumption (9) suppresses the time dimension of

the calculation but it results in two coupled equations, or one equation for

a complex—valued 1 , which may be solved by line relaxation. Our experience

with unsteady ADI techniques has been that they are at least as effective as

line relaxation for problems of this type, and hence there is no numerical

advantage to the decomposition (9). This conclusion was also arrived at by

Ballhaus et al.
13 

in a related study.

An appropriate scaling of the dependent and independent variables in (7)

and (8) allows either the thickness or the frequency to be normalized to the

value 1, as expected. This scaling, in terms of the transonic similarity

parameter K , the amplitude of the unsteady motion 6, its frequency w,

and the body ’s basic thickness t , leads to

- 
____ ____ 

1
~~x,y;K;6;w;l) = ~~tj

where x and y are suitably scaled replacements for the x and y coordi-

nates. This result can be used to check trends noted in the numerical results.

One—Dimensional Model

To answer the questions raised above, we study a simple unsteady one—

dimensional analog of (2). We consider a one—dimensional unsteady equation

that models the important features of (2), and ascer tain how a simple steady

solution is modified by small unsteady perturbations. We consider, then,

+ (1 - 2
~xt 

- 4 C (l - ~~)2} - Q (10)

subject to c~(O ,t) — f
1
(t), $ (0 ,t) — f

2
(t) and either ~~l,t) or t

~~
(l,t) —

f(t). There are restrictions on f which, for brevity, we do not list. Our

I
- -..— -—-—— -~-——- -~~~~~~~~~~~~~ --.---- *—-.-.-
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study could be generalized by replacing 1 — in (10) by (A(x) —
where A(x) is a continuous function of x, but li ttle added insight is

gained.

To simplify matters further , consider the especially simple subcase

f
1 

— 0, f
2 

= —1, f = 3 + 6p(t). When 6 0, we have the steady solution

—x, O < x < 3 / 4
‘p o —

—3(1 — x), 3/4 < x < 1.

This satisfies (10) and the jump condition that one derives from it, viz.,

dx
Es i — 0 on 2 — 1 — (11)

Mow a general solution of (10) , in terms of 4~ , is

— arbitrary function of + 2~l_ :)

)

This can be verified by substitution. With, say ~~(1,t) = 3 + 6p (t) we

have, for x > x ,

~ (x,t) - 3(x - x ) + 6 J ~~~

( 

~ + 2(1 - 
~~~~ ) d; - h(t) (12)S 

x 1

where the choice h(t) — x (t) insures that 
~~II — 0 at x — x because

• $ ° for x < x .

The shock motion must be determined by the direct integration of (11):

2 - 1 - = - ~ p(x (t), t). (13)

L. —-- . -.----. ----j— ---- -~~-— ---—— —~~ -- —..--- —-- - - -— - -- —-- .-----..- — 
~
—

~~~~—----- ---—~.—~~~ - ~~~~~~~~ 
— -

~
-——,- -- ,
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Now, for comparison, we determine the results that are obtained by time

linearization; i .e. ,  we wri te

4i(x,t;6) = c~° (x) + aq,(x,t) + o(6) (14)

and solve the linear equation for ‘~ that results by dropping higher—order

terms in 6. That is, we solve

+ (1 — — = 0 (15)

subject to q~~(l,t) = p(t).

We now linearize the first of equations (11) as follows:

= 0 = ~I4(x°,t) + ~~(~~ ,t)(x5(t) — x°) + ... II

— E t ~ (x °) + 6tL~(x°,t) + 4t°(x (t) —

Thus we conclude that

6 [tp (x°,t)]I = —l[4~°(x °)]I (x — x°). (16)

From the second equation of (11), with x ( t) x° + 6~ (t) we find

~~~~a~~~~i q~dt 2 x  4 X
b

where 
~ ~b 

refers to the value behind the shock. Thus we may replace (11)

by 

~~~~~~~~~~~~~~~~~~~~~~ ~--- - .
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L *(x , t )I  — -4$°(x °)J~
or

~b~~s
,t) = —4~ (t), (17a)

and

(l7b)

Example

Consider now, for example,

p( t) = sin wt ;

it is easy to show that a general solution to (15) is

~~x,t) = — (cos w(l — x — t) — h(t)].

The function h(t) follows from (17a ,b) and assuming, e.g., that

p(3/4,O) 0. Thus

~~x,t) = — (cos w(1 — x — t) — cos (w/4)] (18)

and

x (t )  — F [cos w(~ — t) — cos (w/4)]. (19)

Had we solved (15) with tL’ 0 for x < x (t) and determined the

exact shock motion from (11) with 1 — = —2 + 0(6) used in (12), we

would find that behind the shock

•(x ,t)  a + 3—4x 5 
— [cos w(l — x — t) — cos w(l — x~ 

— t ) 1, (20)

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~ -“-— - -
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where the shock motion is given explicitly by

2 —l tan (t + c) — [tan (t — 1) —
x — — t a n  , (21)

S 
1 + tan (t — l)[tan (c ÷ t)  + -I]

with c——2(tan~~ [tan (~ /8) + 6/ 4 ] ) / w .  For w >> 6 , which is required for

small shock motions, (21) simplifies to

x = + [cos w(-~ — t) — cos (w/4)].

Thus these results are in agreement with (18) and (19) to lowest order in 6.

The time-linearized results (18) and (19) are now compared with the exact results.

The nonlinear result for x > x , given by (12) and (13), is

~~O + 3 - 4x (t) + 6 sin ~ ~ + 2(1 - 
~~ dx (22)

S x 1 —

where

dx l — x
—

~~~E x  “-~~~sin w  t +  s (23)dt 
1 — 2 x

S

The results (22) and (23) are consistent with the time—linearized re-

sults (18) and (19) to 0(6),  exc ept for a slow secular drif t in the shock

position of 0(62t) that occurs in (23) but not in (19). This is an arti-

fact of our one—dimensional model; even if it were not, it would not invali-

date the use of the linear results for flutter studies where 6 is small and

structural damping determines the time scale of interest.

The time—linearized result for ~~, given by (14) and (18) , is shown in Figure 1

for 6 = 0.1 with u 0.5. The shock motion (19) is shown in Figure 2,

— ~~~~~~~~~~~~~~
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again for 6 — 0.1 and with w — 0.5 , 1.0 and 2.0. As is clear from (19),

the shock excursions are 0(61w) . Consequently , they canno t be neglected in

the calculation unless 61w is much smaller than one. For the times shown,

there is no significant difference between the results (19) and (23) due to

the O(62t) term.

The main conclusions we derive from this study are that it is essential

to consider shock motion in computing time—linearized solutions if we are

to determine the effec ts of small unsteady perturbations correc tly to lowest

order , and that shock excursions increase as the frequency is decreased.

Additionally, this motion can be computed in a straightforward manner.

Two—Dimensional Time—Linearized Analysis

The results from our simple model show that the time—linearized results

must be corrected for shock motions if they are to be consistently correct to

lowest order. This can be accomplished by calculating the shock motion in

conjunction with the time—linearized solution. Here we follow an analogous

procedure and calculate the change with time of the values of the perturbed

potential behind the shock required by the linearized shock jump relations.

Thus, we wish to solve (8)

_ 2KM
~
]Pxt + ( [1 — M

2 
- (y + 1)M 24 ° ]iP } + tj, = 0

with (8)

~,(x,0,t) — YU
(x t) - 4 < x < 4

subject to the far—field boundary and Kucta conditions. As we noted , the

steady result for ~~
° can be calculated adequately for most small disturbance

flows using normal shock fitting as described in Reference 9. Under the

assumption that the shock wave is normal, the shock jump conditions (4) and

__ -- .~~~~~~~~ - - -... - . - - -- - .-- - 
_- - - ~~~~~~~~~~~~~~~
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(5) can be replaced by requiring

dx M2 - l
l[ cPi = ~ on s y +  I. 

(y + l)M 2 + (24)

For steady flow — 0 and in (24) {“.} = 0. We express the shock posi-

tion as

x
5 

— x° + 6~~(t)

and conclude that the shock motion is governed by

— 
y + 1

dt 2K x

As discussed in Referenc e 9 , ‘4i is evaluated at y = 0. On the shock

— fJ~p 0J + 6[~j ,~~; (25)

linearizing the expression (25) f or the velocity potential abou t the steady

shock position we f ind

•(x ,y, t) — •(x°,y, t) +

a $°(x °,y) + $°(x °,y)ód ~ + SqI (x°,y, t) + 0(6 2).

Because we have treated the shock as a normal one, y appears here simply as

a paramer~ 1. Now 1p (x ,t ,y)~ and ~c~°(x °,y)~ are both zero; consequently

we have

a
_ _ _ _ _  L
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~ I~~~(x ,y) 1 
J

~~i~~ (x 0 , 0 , t)d t  (26)

which must be integrated in time in conjunction with the solution to (8).

Equation (8) is now solved numerically in time and space in conjunction

with (26) , which is used to update the values of 4’ behind the shock. We

start with a steady solution and initiate a body motion , such as the harmonic

oscillation of a flap. The calculations proceed in time until they are

judged to be periodic. Note that indicia]. as well as harmonic motions may

be considered because we have not utilized the usual harmonic decomposition

(9).

Numerical Proced ure

The numerical procedure used here derives from that developed for the

nonlinear equation (1). The main simplification occurs in the shock jump con-

ditions. In order to minimize the far—field boundary effects on the results

which, as Magnus’4 has noted, can be significant, we again use coordinate
9stretching in the form:

= ±[l — exp (—a
1Jx~) ]  for x ~ 0,

— ±(l — exp (—a
2~
y~)] for y ~ 0,

where a
1 

and a
2 

are constants tha t determine the mesh distribution. This

stretching transforms the infinite physical domain into a computational domain

bounded by 
~~ 

< 1 and 
~ 

< 1. The mesh distribution is concentrated on

the airfoil. In these coordinates (8) becomes

A
i{4’~

)
~ 

+ A
2

{f ( ~ ,~ )( 1 — I~~ )4 ’~
}
~ + A

3
{(l — T~~I ) 4 ’~~~}  — 0 (27 )
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where
2 2—2IQ~~a a a

_ _ _ _ _ _ _  1 
_ _ _ _ _

1 a2(l 
— !rft) ‘ 2 a2

(1 — j n j )  ‘ 3 1 —
and

f (~,ri) = 1 — — a
1

(y + l)M2(l — kI )~

is known in discrete form from the steady numerical solution. This function

is discontinuous at F~ — ~~
° for 0 < n < n*. First—order backward time and - :

spatial differences are used for the first term. Centered or first—order

backward differences are used for the second term if f is less than or

grea ter than zero , respectively; f(~ ,ri) is known in advance with the deri-

vative automatically evaluated correctly . Centered differences are

used for the third term and denoted by

The solution is computed using an alternating—direction implicit pro-

cedure f irs t appl ied to transonic flow problems by Ballhaus and Steger 15 and

by Beam and Warming
16
, and subsequently fur ther ref ined by Ballhaus and

Goorjian17
. The solution is advanced in time from its initial steady state

to subsequent time levels with the following two—step procedure.

New values of 4’, deno ted by ~1t, are calculated along ri — constant

lines using

A
1 

~~~ 
+ A

2
(f(C,n)(1 — 

~)4’~ }~ + A3
6~{(l — 1 r~~)4’~ } — 0.

This is coupled with the computation of new values of beh ind the shock

obtained by using (26). With the shock located at ~~
° such that

C3 
< C5+i~ 

we can express the values of 4’ ahead of and behind the
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shock in a Taylor series, finally arriving at the result

— —C (n)~ t4’~ + II’II~ (28)

where

C(n) — 4K 
1 a~ (l — IC I)2iE~~(C ,n)ll

and is evaluated, following (26) , at n = 0. One—half the change in

4’ across the shock is accounted for in this step, effec tively using the

trapezoidal rule in the time integration (26); hence C is half the value

implied by (26).

With the values of determined, the new values of 4’ at the sub-

sequent time level, 
~~~~ 

are calculated using

A
1 ~~~~~ 

+ 6 {(l - InI)(*~~
1 

- 4’
fl ) } - 0

in conjunction with the completion of the time integration (26),

— _C(n)
~
t
~
r1 + ~*J

+ (29)

*Again, is evaluated at n — 0.

The full procedure is, effectively,

A
1 ~~~~At 

÷ A
2
Cf(C,n)(l - C I ) 4 ’~

}
C + 4 A36 ( (l  - n I ) ( 4 ’~~~ + 4’

fl
)} = o

*
The results given by the authors in AIAA Paper No. 77—675 were in error
because 4’~ was allowed to vary with n; this is not consistent with the
normal sho~k approximation that gives (24).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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with (26) implemented in the form (28), (29). The procedure outlined here

effectively corrects the 4’ values for shock motions as the solution pro-

gresses. The shock motion is easily determined simultaneously by using (26)

and the expression for d~/dt to find

x~~
1(O,t) — _h

~
(x ,O,t)

~~~~
/(t

~~
(x ,0)J. (30)

The computations then provide results for like those sketched in

Figure 3. This figure depicts the steady state result and the unsteady

changes as well as the shock positions at two different time levels where the

shock is behind the steady state position. When the shocks have been inserted

in their known positions we see that we need to analytically continue data

ahead of and behind the shock in order to complete the solution. For shock

excursions that are o(1) we can simply extrapolate the steady state data,

both ahead of and behind the shock , to determine the pressure distribution

on the body correctly to lowest order. Larger shock motions are, of course ,

not admissable in this theory.

Results and Discussion

Time—linearized results have been computed for an NACA 64A006 airfoil

experiencing harmonic pitching and flap motions. As noted earlier, in the low

frequency approximation made here, pitching and plunging motions lead to the

same result except that the time—linearized perturbations are proportional to

the maximum pitch angle for the former , and K times the maximum amplitude

for the latter. Harmonic motions initiated from a steady state become nearly

periodic in three to ten cycles, with the changes induced by flap osc illa tions

_ _ _ _  - - -. .- _ - -— 
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becoming periodic more rapidly than those resulting from pitching oscilla-

tions. More cycles were required for larger reduced frequencies and , to a

lesser degree, higher Mach numbers.

In order to confirm the validity of the time—linearized calculations,

both the time—linearized and nonlinear algorithms were used to compute the

response to a step change in angle of attack and the harmonic response to

pitching motions. Figure 4 compares the nonlinear and time—linearized re—

suits for the normalized circulation and shock position for harmonic pitching

motions at N ,, — 0.88 and K — 0.48. For these conditions very small un-

steady changes lead to very small shock motions and in both calcu—

lations the shock wave remains between grid points. Because of the

extrapolation procedure used in the nonlinear shock—fitting, the finite mesh

size used can introduce errors, albeit small ones, in the shock’s position

when a grid line is crossed. We wished to eliminate these errors in order to

use the nonlinear calculations to judge the accuracy of time—linearized cal-

culations. These results indicate that for pitching about mid—chord , non-

linear, amplitude dependent , behavior occurs for dfr > 0.1 for K — 0.48.

Because the amplitude of the shock motion increases with decreasing K, non-

linear effects occur at smaller values of dir at lower reduced frequencies.

Results are given for the fifth cycle; note that the nonlinear results are

not yet periodic. Figure 5 compares the nonlinear and time—linearized pres-

sure deviation from steady state at six angular times for the same conditions.

Good agreement between the results is obtained for 6/t less than 0.1.

Time—linearized pressure distributions at six angular positions for an

oscillating quarter—chord flap with K — 0.06 and M~,, 0.875 are shown in

Figure 6. The flap deflection is downward during the first half of the cycle.

The results for the second half of the period , for the symmetrical problem

~ 
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shown here , are just the results shown with the lower and upper surface pres-

sures interchanged. Thus the results for 0° are not given as they are just

those for 1800 with the lower and upper surface pressures reversed . Be-

cause the flap hinge occurs very close to the steady state shock location,

the pressure singularity due to the change in flow direction at the hinge is

missed. The circulation and shock excursion obey the following relations:

r (t)Id — 9.26 sin (t — 5 90) ,

x (t )  — 12 sin (t — 5 10) .

Note the substantial phase lag in the circulation and the shock’s position.

Time—linearized pressure distributions at six angular positions for an

oscillating airfoil with K - 0.12 and M,, — 0.87S are depicted in Figure

7. If these results are multiplied by K, then they represent the pressure

perturbations for a plunging airfoil. As in the previous case of an oscil-

lating flap, changes in forces and moments of 0(6/K ) occur due to shock

wave motion. In this case

— 5.48 sin (t — 7 0°) ,

x (t )  — 5.62 sin (t — 87°).

Analogous computations have been carried out for K — 0 .06, 0.12, 0.24

and 0.48. Figure 8 depicts the shock wave’s excursion and maximum circulation

as a function of I(1. The nearly linear variation of the shock excursion

substantiates an observation made in a one—dimensional model where the shock

wave excursion is directly proportional to 1/K. 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In these calculations the circulation gives an immediate evaluation of

the l ift  coefficient as a function of time; the moment coefficient must be

evaluated by integrating the moment of the pressure coefficient. This is

done by integrating the moment of pressure perturbations with the shock wave

in its steady—state position and then correcting these results for  the moment

due to the shock wave motion , assuming that the shock’ s strength is defined

by the steady—state pressure field. This makes an error in the shock strength

of 0(6), but the effect on the moment is O(62/K); because we have neglected

other higher—order terms it is consistent to neglect this change in the

strength of the shock wave.

For the time— H nearized results to be valid we must really require

6/ r K  << 1. Our numerical results indicate that for 6/rK < 0.2 the unsteady

perturbations are essentially linear.

The time—linearized algorithm used here is a derivative of that used for

the nonlinear calculations. Consequently, computational times are not greatly

reduced from those required for the nonlinear calculations. The linearity of

these computations may make it possible to greatly reduce the computational

effort required. Numerical experience has shown some difficulties for

i~t(in degrees) /K > 50. This is in agreement with the consistency requirement

for the ADI algorithm used here . Both the domain of dependence condition

and a local linearized stability analysis shows the procedure to be uncondition-

ally stable. Each time step requires about two seconds of CPU time on a

CDC 6400 , or about 0.1 seconds on a CDC 7600. The number of time steps required

for a given computation is somewhat less than those required for the nonlinear

computations at small values of K, and comparable at larger values of K.
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Conclusion

An accurate and efficient procedure for computing time—linearized , small

perturbation, low frequency transonic flows, including shock wave motions ,

has been developed . Shock motions must be included as their amplitude is

proportional to that of the motion divided by the reduced frequency. Both

indicial and harmonic responses for various modes of motion may be computed

in seconds on a CDC 7600.
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